Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system
نویسندگان
چکیده
Objective To develop a classifier that tackles the problem of determining the risk of a patient of suffering from a cardiovascular disease within the next ten years. The system has to provide both a diagnosis and an interpretable model explaining the decision. In this way, doctors are able to analyse the usefulness of the information given by the system. Methods Linguistic fuzzy rule-based classification systems are used, since they provide a good classification rate and a highly interpretable model. More specifically, a new methodology to combine fuzzy rule-based classification systems with interval-valued fuzzy sets is proposed, which is composed of three steps: 1) the modelling of the linguistic labels of the classifier using interval-valued fuzzy sets; 2) the use of the Kα operator in the inference process and 3) the application of a genetic tuning to find the best ignorance degree that each interval-valued fuzzy set represents as well as the best value for the parameter α of the Kα operator in each rule. Results Corresponding author. Tel:+34-948166048. Fax:+34-948168924 Email addresses: [email protected] (José Antonio Sanz ), [email protected] (Mikel Galar), [email protected] (Aranzazu Jurio), [email protected] (Antonio Brugos), [email protected] (Miguel Pagola), [email protected] (Humberto Bustince) Preprint submitted to Elsevier November 13, 2013 The suitability of the new proposal to deal with this medical diagnosis classification problem is shown by comparing its performance with respect to the one provided by two classical fuzzy classifiers and a previous interval-valued fuzzy rule-based classification system. The performance of the new method is statistically better than the ones obtained with the methods considered in the comparison. The new proposal enhances both the total number of correctly diagnosed patients, around 3% with respect the classical fuzzy classifiers and around 1% versus the previous interval-valued fuzzy classifier, and the classifier ability to correctly differentiate patients of the different risk categories. Conclusion The proposed methodology is a suitable tool to face the medical diagnosis of cardiovascular diseases, since it obtains a good classification rate and it also provides an interpretable model that can be easily understood by the doctors.
منابع مشابه
Type-2 Fuzzy Hybrid Expert System For Diagnosis Of Degenerative Disc Diseases
One-third of the people with an age over twenty have some signs of degenerated discs. However, in most of the patients the mere presence of degenerative discs is not a problem leading to pain, neurological compression, or other symptoms. This paper presents an interval type-2 fuzzy hybrid rule-based system to diagnose the abnormal degenerated discs where pain variables are represented by interv...
متن کاملThyroid disorder diagnosis based on Mamdani fuzzy inference system classifier
Introduction: Classification and prediction are two most important applications of statistical methods in the field of medicine. According to this note that the classical classification are provided due to the clinical symptom and do not involve the use of specialized information and knowledge. Therefore, using a classifier that can combine all this information, is necessary. The aim of this s...
متن کاملAn Application of Interval-valued Intuitionistic Fuzzy Sets for Medical Diagnosis of Headache
This study is to propose a new approach for medical diagnosis using the distance between interval-valued intuitionistic fuzzy sets. For this purpose, we developed an interview chart with interval fuzzy degrees based on the relation between symptoms and diseases (three types of headache), and utilized the interval-valued intuitionistic fuzzy weighted arithmetic average operator to aggregate fuzz...
متن کاملFuzzy Rule-Based System Applied to Risk Estimation of Cardiovascular Patients
Cardiovascular decision support is one area of increasing research interest. On-going collaborations between clinicians and computer scientists are looking at the application of knowledge discovery in databases to the area of patient diagnosis, based on clinical records. A fuzzy rule-based system for risk estimation of cardiovascular patients is proposed. It uses a group of fuzzy rules as a kno...
متن کاملUniversal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications
It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy. A formula to compute the lower upper bounds on the number of interval-valued fuzzy sets needed to achieve a pre-specified approximation accuracy for an arbitrary multivariate con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Soft Comput.
دوره 20 شماره
صفحات -
تاریخ انتشار 2014